Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optically-induced non-linear optical effects in indium-tin oxide crystalline films

Identifieur interne : 00CE70 ( Main/Repository ); précédent : 00CE69; suivant : 00CE71

Optically-induced non-linear optical effects in indium-tin oxide crystalline films

Auteurs : RBID : Pascal:03-0333219

Descripteurs français

English descriptors

Abstract

We have studied thin nanolayers (with thicknesses of about 1-2 nm) between In2O3:Sn (indium-tin oxide (ITO)) crystalline films and glass substrates using the photo-induced optical second harmonic generation (PISHG) method. The maximal PISHG response observed for the pump-probe delay times was about 26 ps. The performed experimental measurements and quantum chemical theoretical simulations show that the observed effects are caused by two factors. The first is caused by the film-glass interface potential gradient and the second is a consequence of additional trapping levels appearing in the energy gap, particularly due to Sn doping. PISHG may be considered as a sensitive tool for such kinds of semiconductors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0333219

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optically-induced non-linear optical effects in indium-tin oxide crystalline films</title>
<author>
<name sortKey="Kityk, I V" uniqKey="Kityk I">I. V. Kityk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics WSP, Al. Armii Krajowej 13/15</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Czestochowa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Computer Modeling, University of Technology, ul Warszawska 24</s1>
<s2>Krakow</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Krakow</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ebothe, J" uniqKey="Ebothe J">J. Ebothe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Université de Reims, UTAP-LMET, EA no 2061, UFR Sciences, BP 138, 21 rue Clement Ader</s1>
<s2>51685 Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Miedzinski, R" uniqKey="Miedzinski R">R. Miedzinski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics WSP, Al. Armii Krajowej 13/15</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Czestochowa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Addou, M" uniqKey="Addou M">M. Addou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Université Ibn Tofail, LOEPCM, Faculte des Sciences, BP133</s1>
<s2>Kénitra</s2>
<s3>MAR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Kénitra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sieder, H" uniqKey="Sieder H">H. Sieder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>University of Stuttgart, Electronic Micorscopy Group</s1>
<s2>Stuttagart</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Stuttagart</wicri:noRegion>
<wicri:noRegion>Electronic Micorscopy Group</wicri:noRegion>
<wicri:noRegion>Stuttagart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karafiat, A" uniqKey="Karafiat A">A. Karafiat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Computer Modeling, University of Technology, ul Warszawska 24</s1>
<s2>Krakow</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Krakow</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0333219</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0333219 INIST</idno>
<idno type="RBID">Pascal:03-0333219</idno>
<idno type="wicri:Area/Main/Corpus">00CE81</idno>
<idno type="wicri:Area/Main/Repository">00CE70</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Digital simulation</term>
<term>Doping</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>III-V semiconductors</term>
<term>Indium oxides</term>
<term>Interfaces</term>
<term>Nanostructures</term>
<term>Non linear effect</term>
<term>Optical harmonic generation</term>
<term>Photoinduced effect</term>
<term>Polycrystals</term>
<term>Second harmonic generation</term>
<term>Thickness</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>Trapping</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet non linéaire</term>
<term>Epaisseur</term>
<term>Génération harmonique optique</term>
<term>Génération harmonique 2</term>
<term>Etude expérimentale</term>
<term>Piégeage</term>
<term>Interface</term>
<term>Dopage</term>
<term>Bande interdite</term>
<term>Simulation numérique</term>
<term>Addition étain</term>
<term>Effet photoinduit</term>
<term>Indium oxyde</term>
<term>Semiconducteur III-V</term>
<term>Couche mince</term>
<term>Polycristal</term>
<term>Nanostructure</term>
<term>In2O3</term>
<term>In O</term>
<term>4265K</term>
<term>7867B</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have studied thin nanolayers (with thicknesses of about 1-2 nm) between In
<sub>2</sub>
O
<sub>3</sub>
:Sn (indium-tin oxide (ITO)) crystalline films and glass substrates using the photo-induced optical second harmonic generation (PISHG) method. The maximal PISHG response observed for the pump-probe delay times was about 26 ps. The performed experimental measurements and quantum chemical theoretical simulations show that the observed effects are caused by two factors. The first is caused by the film-glass interface potential gradient and the second is a consequence of additional trapping levels appearing in the energy gap, particularly due to Sn doping. PISHG may be considered as a sensitive tool for such kinds of semiconductors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>18</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optically-induced non-linear optical effects in indium-tin oxide crystalline films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KITYK (I. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EBOTHE (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MIEDZINSKI (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ADDOU (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SIEDER (H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KARAFIAT (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physics WSP, Al. Armii Krajowej 13/15</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Computer Modeling, University of Technology, ul Warszawska 24</s1>
<s2>Krakow</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université de Reims, UTAP-LMET, EA no 2061, UFR Sciences, BP 138, 21 rue Clement Ader</s1>
<s2>51685 Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Université Ibn Tofail, LOEPCM, Faculte des Sciences, BP133</s1>
<s2>Kénitra</s2>
<s3>MAR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University of Stuttgart, Electronic Micorscopy Group</s1>
<s2>Stuttagart</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>549-553</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000118312460300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0333219</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have studied thin nanolayers (with thicknesses of about 1-2 nm) between In
<sub>2</sub>
O
<sub>3</sub>
:Sn (indium-tin oxide (ITO)) crystalline films and glass substrates using the photo-induced optical second harmonic generation (PISHG) method. The maximal PISHG response observed for the pump-probe delay times was about 26 ps. The performed experimental measurements and quantum chemical theoretical simulations show that the observed effects are caused by two factors. The first is caused by the film-glass interface potential gradient and the second is a consequence of additional trapping levels appearing in the energy gap, particularly due to Sn doping. PISHG may be considered as a sensitive tool for such kinds of semiconductors.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B65K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Génération harmonique optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical harmonic generation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Génération harmonique 2</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Second harmonic generation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Piégeage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Trapping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Interface</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Effet photoinduit</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Photoinduced effect</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Efecto fotoinducido</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium oxyde</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>In O</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>4265K</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7867B</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>230</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00CE70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00CE70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0333219
   |texte=   Optically-induced non-linear optical effects in indium-tin oxide crystalline films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024